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Statistical Moments in Pharmacokinetics: 
Models and Assumptions 
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Abstract-The modelling basis of statistical moments in pharmacokinetics is considered and the associated 
assumptions and restrictions highlighted. Both deterministic and statistical models are described and they 
are seen to give identical results on the basis ofequivalent assumptions. It is shown that it is not necessary to 
assume that all kinetic processes are first order and that some of the pharmacokinetic parameters may be 
dependent on the dose of administered drug and on the route of administration. 

The introduction of statistical moments to pharmacokinetic steady-state volume of distribution (Vss) is considered 
studies by Yamaoka et al (1978) marked a significant (Gibaldi & Perrier 1982) to be the most useful parameter to 
departure from classical compartmental modelling. Their describe the apparent distribution space of a drug and is 
statement that “. . . these moments can be calculated by defined as the ratio of the total amount of drug in the body to 
simple numerical integration of experimental data without a the drug concentration in the blood at steady-state. In the 
pharmacokinetic model” was perhaps to some extent re- following sections expressions will be derived for these 
sponsible for this approach being described as ‘model parameters which are useful for their estimation from 
independent’. Such a description is, of course, inappropriate pharmacokinetic data. Both deterministic and statistical 
since no parameter estimation procedure is truly model models will be described. 
independent. A better description is ‘noncompartmental’ The case of a single administration (by any route) of N 
because the methodology does not require the user to specify drug molecules at a reference time (t = 0) with n of these 
a full compartmental model. It is not surprising that ultimately reaching the systemic circulation will be consid- 
misunderstandings have arisen (Chanter 1985; Gillespie & ered. The characteristics of the kinetic processes will be 
Veng-Pedersen 1985; Landaw & Katz 1985) as to the exact considered to be time invariant. In such circumstances F can 
nature of the model used and the associated assumptions and be written, 
restrictions. Stochastic models have been expounded by 

n 
N 

Matis et al(l983) and by Beal(l987). However, both of these 
papers assumed that drug molecules behave independently 

F = -  (1) 

of each other as far as those processes which govern the 
pharmacokinetic behaviour of the drug are concerned. This 
assumption is the stochastic equivalent of the assumption 
that all kinetic processes are first order in deterministic 
models. It is not necessary to assume that all kinetic processes 
are first order in order to use noncompartmental methods. 
The purpose of this paper is to demonstrate this and to 
examine the modelling assumptions which are required. 

The following are the parameters of interest which it is 
required to estimate. The fraction F, of the administered 
drug dose which ultimately reaches the systemic circulation is 
known as the systemic availability (sometimes referred to as 
the bioavailability). The time interval between administra- 

Deterministic Model 

If p(t) is used to denote the proportion of drug molecules 
reaching the systemic circulation which has a residence time 
of t, then 

‘x 

(2 1 MRT = tp(t)dt 
0 

Let ne(t) be the number of drug molecules eliminated from 
the body during the time interval 0 to t. If it is assumed that 
all drug molecules entering the systemic circulation are 
ultimately eliminated then it follows that 

tion and elimination (by excretion or by metabolism) from 
the body for a drug molecule reaching the systemic circula- 

n = lim n,(t) 
t - c c  

(3) 

tion is known as its residence time. The residence time is not 
the same for each drug molecule but has a distribution whose 

the mean length of time the molecules reaching the systemic 
circulation spend in the central compartment (the plasma 
compartment) before elimination is denoted by MRTC. 
Total body clearance, CLT, is defined as the ratio of the drug 
elimination rate and the plasma drug concentration, and is a 
measure of the efficiency of the elimination processes. The 

and 

(4 1 
location may be described by its mean (MRT). Furthermore, 1 .  F = - Iim n,(t) 

N t - m  

The number of drug molecules eliminated at time t is equal to 
the elimination rate at time t which is the first derivative of 
&(t) with respect to time. Each of the molecules eliminated 
at time t has a residence time o f t ,  hence 
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1 dn ( t )  - 1 dn,(t) 
n dt N F  d t  

p( t )  = -e - -- 

Substituting from equation 5 into equation 2 gives 
m 

M R T  = & [ t dt 

which may be integrated to give 

If it were possible to collect data relating to  n,(t) then these 
data could be used to estimate F and the M R T  without any 
further modelling assumptions being necessary. However, 
drug molecules are often excreted and metabolized via a 
variety of different pathways and as a result it is generally not 
feasible to measure n,(t), or its first derivative, directly. The 
quantity most easily and most often measured is the 
concentration of the drug in the blood at  time t and this is 
denoted by C(t). In order to be able to use data relating to 
C( t )  to  estimate F and the MRT, the relationship between 
C( t )  and n,(t) must be considered. 

The relationship between C( t )  and n,(t) may be written as 

where NA is Avogadro's constant and CLT may or may not 
be a time-dependent quantity. We will assume that total 
body clearance is independent of time (which implies that it 
is independent of dose and route of administration also). 
This assumption might be justified in a number of ways, one 
of which corresponds to a compartmental model with 
elimination taking place from the central compartment only 
by first-order processes. Integrating both sides of equation 8 
with respect to time and taking limits as t approaches infinity 
yields 

e 

I-= 0 
lim n,(t) = CLTNA j C(t)dt (9) 

Substituting from equations 8 and 9 into equations 4 and 6 
gives 

known) or CLT (if F is known, e.g. F = 1 following bolus 
intravenous administration) from plasma drug concentra- 
tion-time data. 

The steady-state volume of distribution may be written as 

(13) 
XT vss = - 
css 

where XT and Css are the total amount of drug in the body 
and the plasma drug concentration, respectively, a t  steady- 
state, neither of which is time-dependent because of the 
steady-state. Now the right hand side of equation 13 can be 
written as 

(14) 
XT cLTss -=- 
css kss 

where CLTSS is the total body clearance at  steady-state and kss 
is the fraction of X, eliminated per unit time at  steady-state. 
It may be shown (for details see Appendix A )  that the mean 
residence time a t  steady-state is given by 

1 
MRTss = - (15)  

kss 

Hence, 
Vss = MRTss * CLTss (16) 

Now, if it is reasonable to assume that following the single 
drug dose the M R T  and CLT are equal to their steady-state 
equivalents and using equations 1 1  and 12 we can write 

(17) 
F N  AUMC vss = -- 
NA AUC2 

which can be used to estimate Vss provided F is known. 
Let n,(t) be the number of drug molecules in the central 

compartment a t  time t and consider the time interval from t 
to t + At, where At is sufficiently small such that no drug 
molecules enter or leave the central compartment during the 
interval. Then the total time spent in the central compart- 
ment during the interval t to t + At is q( t )At .  Allowing At to  
approach zero and summing over all such intervals gives: 

the total time spent by all molecules in the central compart- 
ment = 

Hence, 
E 

n 

where A U C  and AUMC denote the areas under the plasma 
drug concentration vs time curve and the corresponding first 
moment curve, respectively. Clearly, equations 10, 1 1  and 12 
form a basis for the estimation of M R T  and F (if CL, is 

J 

However, 

& (t ) = V,NAC (t (20 ) 

where V, is the volume of distribution of the central 
compartment and consequently we can write 

'INA J c ( t ) d t  = - 'lNAAUC 
N F  (21) N F  

MRTC = - 

0 

In the case of bolus intravenous administration 
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where C(0) is the concentration of drug in the blood 
immediately following administration. 

Statistical Model 

Assuming again that all n drug molecules reaching the 
systemic circulation are ultimately eliminated, their resi- 
dence times TI ,  T,, . . . , T, are random variables with a range 
from zero to infinity. Let the marginal probability density 
function (pdf) of T, be denoted by fT,(t) i = 1,2, . . . , n. The 
numbering scheme 1, 2, . . . , n by which the molecules are 
identified is totally arbitrary and as a consequence of this 
arbitrariness the molecules of drug are indistinguishable 
from one another. Consequently their marginal distributions 
must be identical, as in 

(23) 

It is important to note that the marginal distributions being 
identical does not imply that they are independent of one 
another and no assumption regarding independence is being 
made here. As before 

f,,(t) = fT2(t) = . . . = f,"(t) = f,(t) 

1 .  
N 1 - 5  

F = - Iim n,(t) 

where n,(t) is the number of drug molecules eliminated from 
the body during the time interval 0 to t. The MRT is given by 

(25 1 
x 

MRT = l tfT(t)dt 
0 

or by 
z 

MRT = uf,(u)du 
0 

5 

= J (1 - FT(t))dt (26 1 
0 

where FT(t) is the cumulative distribution function (cdf) of 
the common marginal distribution. The probability of a drug 
molecule being present in the body (central or other 
compartment) at time t is given by 1 - FT(t) which is 
estimated by (NF - n,(t))/NF. Hence, the MRT can be 
estimated by 

(27) 

and the elimination processes in order to be able to use C(t)  
data to estimate F and the MRT. 

Consider a short interval of time from t to t + At, the 
probability of one or more molecules being eliminated 
during this interval is given by the addition law of probability 
as 

P(t) = nfT(t)At + o(At) (28) 

where o(At) represents terms in At" m 2 2. The relationship 
between P(t) and C(t)  may be modelled as follows 

P( t )  = CL,NAC(t)At + o(At) (29 1 
where o(At) again represents terms in Atmm 2 2 and CL, is 
total body clearance which in the case of the statistical model 
is defined as the limiting value (as At approaches zero) of the 
ratio of P(t)/At to NAC(t). CLT may or may not be time 
dependent, we shall again consider the case where it is time 
independent. One way in which this might arise is if the 
elimination takes place from the central compartment only 
and the drug molecules behave independently of one another 
as far as the elimination processes are concerned. The 
derivation of equation 29 from such a model is detailed in 
Appendix B. 

Equating the right hand sides of equations 28 and 29, 
dividing by At and taking limits as At approaches zero gives 

nfT(t) = CLINAC(t) (30) 

Multiplying both sides of equation 30 by t" and integrating 
with respect to t from zero to infinity gives 

z 00 

n 1 tX fT(t)dt = CLTNA J t"C(t)dt (31) 
0 0 

Letting a = 0 gives 
2 

n = CLTNA C(t)dt (32) 
0 

z 

since f,(t)dt = 1 because fT(t) is the pdf of T which takes 

values in the range zero to infinity. Consequently F and CLT 
can be written as 

0 

NF 
CL, = ~ 

NAAUC (34) 

Letting a = 1 gives 

m cc 

n J tf,(t)dt = CLTNA tC(t)dt ( 3 5 )  
0 0 

J: 

Again we find that if it were possible to collect data relating 
to n,(t) they could be used to estimate F, and MRT. For the 
reasons cited earlier this is often not possible and the 
available data are blood drug concentrations denoted by 
C(t). We again need to model the relationship between C( t )  

Using the same argument as previously and the statistical 
equivalent of appendix A gives 
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FN AUMC vss = -- 
NA AUC' (37) 

which can be used to estimate Vss if one is prepared to make 
the assumption that the MRT and CLT are equal to their 
steady-state equivalents and provided F is known e.g. 
following bolus intravenous drug administration. 

Turning now to the residence times in the central compart- 
ment we consider, for the sake of simplicity of presentation, a 
situation in which each drug molecule reaching the systemic 
circulation makes one and only one visit to the central 
compartment. Let the time at which a drug molecule enters 
the central compartment be denoted by the random variable 
X and the length of time spent there be denoted by the 
random variable Y. Because the drug molecules are indis- 
tinguishable the joint marginal distribution of X and Y is the 
same for each drug molecule and since we are considering a 
time invariant system X and Y are independent with 
marginal pdf and cdf values given by fx(x), f,(y), Fx(x) and 
FY (y ). The mean residence time in the central compartment 
is the mean of Y. For a drug molecule to be present in the 
central compartment at time t it must have entered the 
central compartment before t and its sojourn there must be 
long enough so that it is still present at time t. Hence the 
probability of a drug molecule being in the central compart- 
ment at time t is given by 

(38) 

(39) 

l r c  

P = J J fX(X)fY(Y)dYdX 
0 1 - i  

t 

= J fx(X)(l - Fy(t - x))dx 
0 

Substituting u for t - x gives 
t 

P = f,(t - u)(l - F,(u))du (40 1 
0 

Integrating both sides with respect to t from zero to infinity 
gives 

cc a1 

J Pdt = J J fx(t - u)(l - Fy(u))dudt 

= J J fx(t - u)(l - Fy(u))dtdu 

(41) 
0 0 0  

* m m  

(42 1 
0 "  

" m 

= J ( 1  - Fy(u)){ J fx(t - u)dt}du (43) 
0 " 
m 

= J (1 - Fy(u))du (44) 

= MRTC (45 1 
The fraction of drug molecules reaching the systemic circula- 
tion which are present in the central compartment at time t 
can be used to estimate P and as a result the MRTC can be 
estimated as follows 

0 

1 "  
N F  0 

MRTC = - J s ( t ) d t  

Again using equation 20 yields 

MRTC = - 'INA AUC 
N F  (47 1 

The above argument can readily be generalized to the case 
where each drug molecule may visit the central compartment 
any number of times before its elimination from the body. 

Discussion 

Expressions in equations 4, 6, 7, 24 and 27 were derived on 
the basis of a single modelling assumption that all drug 
molecules entering the systemic circulation are ultimately 
eliminated. These expressions are only useful for parameter 
estimation if data relating to drug elimination are available 
or can be collected. In the absence of such data, further 
modelling assumptions are required to be able to express the 
parameters in terms of the observable quantities. The 
concentration of drug in the blood stream is the most 
frequently observed quantity and can be related to elimi- 
nated drug by equation 8 for a deterministic model or 
equation 29 for a statistical model. By making the additional 
assumption that the total body clearance is independent of 
time, equations 10, 11, 12, 33, 34 and 36 were derived. This 
additional assumption might be justified in a number of ways 
and one of these corresponds to a compartmental model with 
elimination taking place from the central compartment only 
via first order processes. No assumptions regarding other 
phannacokinetic processes (e.g. absorption and distribu- 
tion) nor the number of kinetically distinguishable compart- 
ments were made. 

Equations 17 and 37 may be used to estimate the steady- 
state volume of distribution, but are based on the aforemen- 
tioned assumptions together with the assumption that 
following the administration of a single dose of drug the 
MRT and CLT are equal to their steady-state equivalents. 

Equations 21 and 45 for the MRTC required no assump- 
tions other than the assumption that all drug molecules 
entering the systemic circulation are ultimately eliminated. 

It should be borne in mind that since it was not assumed 
that the drug molecules behave in a manner independent of 
one another, the parameters being estimated (other than 
CLT) may be dependent on the dose of administered drug 
and on the route of administration. 

Appendix A 

At steady-state the drug input and elimination rates (into 
and from the systemic circulation) are equal and constant as 
is the amount of drug in the body. Consider some reference 
time (t = 0) ;  the number of drug molecules input at this time 
is given by dnJdt which is the elimination rate. Let p(t) be 
the proportion of these 'reference' molecules which is 
eliminated at some time t later. then 

1 

MRTSS = J tp(t)dt (Al) 
0 

Furthermore, the fraction of these 'reference' molecules 
remaining in the body up to time t which is eliminated at time 
t is given by 

1 - J 
0 
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where kss is as defined previously. Solving equation A2 for 
p( t )  and using the solution in equation A1 gives 

('43) 

Appendix B 
Let us assume that drug elimination takes place from the 
central compartment only and that each of the n,(t) drug 
molecules present in this compartment a t  time t has a 
probability IAt of being eliminated during the interval t to 
t + At, where I is a constant. If it is further assumed that as 
far as the elimination processes are concerned the drug 
molecules behave independently of one another, then the 
probability of r drug molecules being eliminated during the 
interval t to  t + At is given by the binomial probability. 

Pr(r eliminated) = ("y') (IAt)I(l - IAt)"J1)-' (BI) 

Hence the probability of one or more molecules being 
eliminated during the interval t to t + At is 

(B2) 

(B3 1 

P( t )  = 1 - (1 - I A t p " )  

P ( t )  = n,(t)A.At + o(At) 
Which gives 
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